Permutation polynomials induced from permutations of subfields, and some complete sets of mutually orthogonal latin squares
نویسنده
چکیده
We present a general technique for obtaining permutation polynomials over a finite field from permutations of a subfield. By applying this technique to the simplest classes of permutation polynomials on the subfield, we obtain several new families of permutation polynomials. Some of these have the additional property that both f(x) and f(x) + x induce permutations of the field, which has combinatorial consequences. We use some of our permutation polynomials to exhibit complete sets of mutually orthogonal latin squares. In addition, we solve the open problem from a recent paper by Wu and Lin, and we give simpler proofs of much more general versions of the results in two other recent papers.
منابع مشابه
Discrete phase-space approach to mutually orthogonal Latin squares
Abstract. We show there is a natural connection between Latin squares and commutative sets of monomials defining geometric structures in finite phase-space of prime power dimensions. A complete set of such monomials defines a mutually unbiased basis (MUB) and may be associated with a complete set of mutually orthogonal Latin squares (MOLS). We translate some possible operations on the monomial ...
متن کاملCompositional inverses, complete mappings, orthogonal Latin squares and bent functions
We study compositional inverses of permutation polynomials, complete map-pings, mutually orthogonal Latin squares, and bent vectorial functions. Recently it was obtained in [33] the compositional inverses of linearized permutation binomials over finite fields. It was also noted in [29] that computing inverses of bijections of subspaces have applications in determining the compositional inverses...
متن کاملTransversals in Latin Squares: A Survey
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries containing no pair of entries that share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutuall...
متن کاملTransversals in Latin Squares
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries such that no two entries share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogon...
متن کاملPermutation Polynomials Modulo w
We give an exact characterization of permutation polynomials mod ulo n w w a polynomial P x a a x adx d with integral coe cients is a permutation polynomial modulo n if and only if a is odd a a a is even and a a a is even We also characterize polynomials de ning latin squares mod ulo n w but prove that polynomial multipermutations that is a pair of polynomials de ning a pair of orthogonal latin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.1325 شماره
صفحات -
تاریخ انتشار 2013